已知函數f(x)=sin(wx+π/3)(w>0),f(π/
已知函數f(x)=sin(wx+π/3)(w>0),f(π/6)=f(π/3),.
已知函數f(x)=sin(wx+π/3)(w>0),f(π/6)=f(π/3),f(x)在(π/6,π/3)有最小值無最大值,則w=_______.
正確答案: 這句話是關鍵:f(x)在區間(兀/6,兀/3)上有最小值,無最大值
(1)說明(π/6,π/3)中有最低點,
因為f(π/6)=f(π/3),所以最底點必為x=(π/6+π/3)/2=π/4
帶入πw/4+π/3=2kπ-π/2 w=8k-10/3 k整數
(2)說明(π/6,π/3)中無最高點,
故T/2>π/3-π/6=π/6
所以T=2π/w>π/3 所以w<6
由1和2得w=14/3
源于查字典網
正確答案: 這句話是關鍵:f(x)在區間(兀/6,兀/3)上有最小值,無最大值
(1)說明(π/6,π/3)中有最低點,
因為f(π/6)=f(π/3),所以最底點必為x=(π/6+π/3)/2=π/4
帶入πw/4+π/3=2kπ-π/2 w=8k-10/3 k整數
(2)說明(π/6,π/3)中無最高點,
故T/2>π/3-π/6=π/6
所以T=2π/w>π/3 所以w<6
由1和2得w=14/3
源于查字典網